Mechanical fluidity of fully suspended biological cells.

نویسندگان

  • John M Maloney
  • Eric Lehnhardt
  • Alexandra F Long
  • Krystyn J Van Vliet
چکیده

Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemoenvironmental modulators of fluidity in the suspended biological cell.

Biological cells can be characterized as "soft matter" with mechanical characteristics potentially modulated by external cues such as pharmaceutical dosage or fever temperature. Further, quantifying the effects of chemical and physical stimuli on a cell's mechanical response informs models of living cells as complex materials. Here, we investigate the mechanical behavior of single biological ce...

متن کامل

Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings.

Suspended planar lipid membranes (or black lipid membranes (BLMs)) are widely used for studying reconstituted ion channels, although they lack the chemical and mechanical stability needed for incorporation into high-throughput biosensors and biochips. Lipid polymerization enhances BLM stability but is incompatible with ion channel function when membrane fluidity is required. Here, we demonstrat...

متن کامل

Effect of low dose X-ray on membrane fluidity of thalassemic red blood cells

Background: Chest X-ray is one of the examinations required for an annual health checkup. The interaction of radiation to the medium produces free radicals, which consequently causes biological changes either structural or properties of the cells. Whether the radiation from Chest X-ray upright technique affects the plasma membrane fluidity of thalassemic red blood cells (RBCs) is still unclear....

متن کامل

A role of the cancer cell membrane fluidity in the cancer metastases: an ESR study.

AH66F or Yoshida sarcoma (YS) cells were transplanted intraperitoneally into male Donryu rats. Cancer cells obtained from ascites were suspended in saline solution (10(7) cells/ml) after washing. Then, 0.1 ml of each suspension obtained from both strains was injected into the tail vein of 5 rats, respectively. Each metastatic nodule, 1 mm or less in a diameter, thus obtained was then injected i...

متن کامل

Fluidity Onset Analysis in FG Thick-Walled Spherical Tanks under Concurrent Pressure Loading and Heat Gradient

In this paper,fluidity onset analysis in FG thick-walled spherical tanks under concurrent pressure loading and heat gradient has been presented. Designing thick-walled spherical tanks under pressure as tanks holding fluids under heat loads with high heat gradients require new approaches. Under high internal pressure and high temperature, the tank enters the plastic stage in a part of its thickn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 105 8  شماره 

صفحات  -

تاریخ انتشار 2013